Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 176: 74-84, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266477

RESUMEN

Aeration plays a crucial role in accelerating the secondary compression of municipal solid waste (MSW) for the scientific implementation of aerobic bioreactor technology. There are few comparative reports on the secondary compaction characteristics of MSW in aerobic and anaerobic bioreactors. In this study, six long-term compression tests were conducted to analyze the impact of aeration on MSW compression characteristics, considering two degradation conditions (i.e. aerobic and anaerobic conditions) and three overburden stresses (i.e. 30, 50 and 100 kPa). Model-fitting analysis was employed to examine the data from the tests and exiting literatures. The results showed that aeration effectively increased the rate of secondary compression, and slightly enhanced the steady-state secondary compression strain. In addition, these enhancements tended to decrease with increasing stresses. The increment ratio of the secondary compression rate constant (Rk) was concentrated in the range of 25 % to 100 %, and increases with the increase of aeration rate. The increment ratio of the steady-state secondary compression strain (Rε) ranged from 10 % to 90 %, for the MSW with higher content of paper and wood exhibited higher Rε. The advance ratio of the secondary compression stabilization time (Rt) fell within the range of 20-50 %, and Rt is higher when the moisture content is in the range of 50-65 %. These findings provide valuable guidance on the accelerated stabilization in aerobic bioreactors, providing practical references for the application of aerobic technology to informal landfills.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Anaerobiosis , Reactores Biológicos , Instalaciones de Eliminación de Residuos
2.
Environ Geochem Health ; 46(1): 1, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063932

RESUMEN

The municipal solid waste (MSW) landfill in Hangzhou, China utilized zeolite and activated carbon (AC) as permeable reactive barrier (PRB) fill materials to remediate groundwater contaminated with MSW leachates containing ammonium, chemical oxygen demand (COD), and heavy metals. The spectral induced polarization (SIP) technique was chosen for monitoring the PRB because of its sensitivity to pore fluid chemistry and mineral-fluid interface composition. During the experiment, authentic groundwater collected from the landfill site was used to permeate two columns filled with zeolite and AC, and the SIP responses were measured at the inlet and outlet over a frequency range of 0.01-1000 Hz. The results showed that zeolite had a higher adsorption capacity for COD (7.08 mg/g) and ammonium (9.15 mg/g) compared to AC (COD: 2.75 mg/g, ammonium: 1.68 mg/g). Cation exchange was found to be the mechanism of ammonium adsorption for both zeolite and AC, while FTIR results indicated that π-complexation, π-π interaction, and electrostatic attraction were the main mechanisms of COD adsorption. The Cole-Cole model was used to fit the SIP responses and determine the relaxation time (τ) and normalized chargeability (mn). The calculated characteristic diameters of zeolite and AC based on the Schwarz equation and relaxation time (τ) matched the pore sizes observed from SEM and MIP, providing valuable information on contaminant distribution. The mn of zeolite was positively linear with adsorbed ammonium (R2 = 0.9074) and COD (R2 = 0.8877), while the mn of AC was negatively linear with adsorbed ammonium (R2 = 0.8192) and COD (R2 = 0.7916), suggesting that mn could serve as a surrogate for contaminant saturation. The laboratory-based real-time non-invasive SIP results showed good performance in monitoring saturation and provide a strong foundation for future field PRB monitoring.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Contaminantes Químicos del Agua , Zeolitas , Residuos Sólidos , Contaminantes Químicos del Agua/análisis , Zeolitas/química , Carbón Orgánico , Agua Subterránea/química
3.
J Environ Manage ; 345: 118875, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666129

RESUMEN

A thorough knowledge of the consolidation behavior of highly saturated soil under time-dependent stress is essential for the design and construction of abandoned-soil dump sites in the soft soil regions of China. In this study, one-dimensional consolidation analytical solutions are derived for such soil under one-way and two-way drainage conditions, accommodating the time-dependent stress created by various dumping protocols. Representative soil samples are obtained, and consolidation tests are conducted with various saturation degrees (one-way drainage) and loading protocols (two-way drainage), to verify the consolidation equation and determine its range of applicability to various saturation degrees. The effects of layer thickness, dumping type, and compaction degree on the consolidation behaviors of highly saturated abandoned-soil dumps are investigated. The one-dimensional consolidation equation is applicable to soil with saturation degree not lower than 75% under instantaneous stress, stepped stress, and linear stress. The pore pressure distribution with depth is not symmetrical; the eccentric distance of consolidation degree increases with increasing layer thickness in the stress application stage and is approximately zero in the stress keeping stage. The pore pressure at middle of the soil layer increases with increasing layer thickness and decreases with increasing dumping rate from the completion of soil dumping. With increasing compaction degree, the middle pore pressure increases, while the surface settlement decreases. In the premise of the stability of an abandoned-soil dump, where the goals are to reduce post-construction settlement and to shorten the consolidation process of the entire soil layer, the important factors are smaller layer thickness, higher dumping rate, and larger compaction degree.


Asunto(s)
Ambiente , Suelo , Fenómenos Químicos , China , Conocimiento
4.
J Environ Manage ; 329: 117093, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549064

RESUMEN

Aerobic degradation models are important tools for investigating the aerobic degradation behavior of municipal solid waste (MSW). In this paper, a first-order kinetic model for aerobic degradation of MSW was developed. The model comprehensively considers the aerobic degradation of five substrates, i.e., holocellulose, non-cellulosic sugars, proteins, lipids and lignin. The proportion ranges of the five substrates are summarized with the recommended values given. The effects of temperature, moisture content, oxygen concentration and free air space (FAS) on the reaction rates are considered, and the effect of settlement is accounted for in the FAS correction function. The reliability of the model was verified by comparing simulations of the aerobic degradation of low food waste content (LFWC-) and high food waste content (HFWC-) MSWs to the literature. Afterwards, a sensitivity analysis was carried out to establish the relative importance of aeration rate (AR), volumetric moisture content (VMC), and temperature. VMC had the greatest influence on the aerobic degradation of LFWC-MSW, followed by temperature and then AR; for HFWC-MSW, temperature was the most important factor, then VMC and last was AR. The degradation ratio of LFWC-MSW can reach 98.0% after 100 days degradation under its optimal conditions (i.e., temperature: 55 °C, VMC: 40%, AR: 0.16 L min-1 kg-1 DM), while it is slightly higher as 99.5% for HFWC-MSW under its optimal conditions (i.e., temperature: 55 °C, VMC: 40%, AR: 0.20 L min-1 kg-1 DM).


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Alimentos , Reproducibilidad de los Resultados , Instalaciones de Eliminación de Residuos
5.
Environ Sci Pollut Res Int ; 29(33): 50500-50514, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35230635

RESUMEN

Mining and landfill activities can cause serious soil and groundwater contamination with lead (Pb) and cadmium (Cd). Loess soils are common and have been reported as effective for the removal of heavy metals. The spectral induced polarization (SIP) technique has been approved for its nondestructive ability to characterize the contaminant transport process and surface geochemical properties in porous media. In the present study, SIP was applied to monitor Pb2+ and Cd2+ removal processes using loess through column flow-through experiments. The outflow aqueous geochemical analyses indicated a better retention capability of loess for Pb2+, which was through precipitation induced by calcite dissolution and aqueous pH increment, as confirmed by SEM-EDS and XRD results. Cd retention took place mainly through ion exchange with Ca2+ and Mg2+ on the loess surface. The SIP signals showed a continuous decrement on the magnitude of imaginary conductivity during both Pb2+ and Cd2+ flow-through, which was attributed to the total surface area and decrement of polarizable surface charges. The SIP signals differentiated the interactions between loess and Pb2+/Cd2+ by displaying a peak shift to a higher frequency on the imaginary conductivity spectra during Pb2+ flow-through, which was attributed to calcite dissolution and proved by the high correlation (R2 = 0.9366) between the estimated dissolved calcite mass and the peak of imaginary conductivity. The above results suggest that loess has a great potential for field heavy metal remediation applications, and the SIP technique displays a promising capability of monitoring the remediation performance.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Carbonato de Calcio , Plomo/análisis , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Agua/análisis
6.
Sci Total Environ ; 800: 149641, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426370

RESUMEN

Groundwater contamination with iron caused by mining and landfill activities has fueled the development of remediation strategies. Permeable reactive barriers (PRBs) are commonly applied in subsurface remediation because of their high removal effect and low costs. Spectral induced polarization (SIP) technique has been approved for its nondestructive ability to monitor the geochemical processes in porous media. In this study, SIP technique was applied for monitoring iron remediation by limestone at column scale. The chemical analysis showed the pH of the porous fluid increased - attributed to the dissolution of limestone, which promoted the precipitation of iron. The precipitate phases included both γ-FeOOH and Fe2O3 based on X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) results. The micro computed tomography (CT) technique investigated the uneven distribution of the precipitates in the column, which indicated the existence of preferential flow. SIP signals revealed the quantity of the accumulated iron precipitates, which was proved by the chemical measurement and calculation. SIP signals also derived the time evolution of both the average precipitate size and size distribution, which elucidated the processes of precipitate crystal growth and aggregation during Fe flow-through. Above results suggest that SIP holds the promise of monitoring the engineering barrier performance.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Carbonato de Calcio , Hierro , Contaminantes Químicos del Agua/análisis , Microtomografía por Rayos X
7.
Environ Sci Pollut Res Int ; 28(30): 41283-41295, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33779904

RESUMEN

The pumping performance of the traditional vertical well is often poor in municipal solid waste (MSW) landfills due to the blocking effect of landfill gas on leachate migration. To improve the pumping performance, a vacuum vertical well was designed and then installed at the Tianziling landfill. When the leachate was drawn out through submersible pump, the landfill gas was simultaneously extracted through vacuum pump to form vacuum pressure in the well. The vacuum pressure could increase the hydraulic gradient of leachate flow as well as the relative liquid permeability of MSW. Pumping tests were carried out to explore the effectiveness of the vacuum pressure on improving the pumping performance of vertical well. When the vacuum pressure increased from 0 kPa to - 30 kPa, the steady leachate pumping rate increased from 1.58 to 2.34 m3/h, and the steady leachate level drawdown increased from 5.9 to 10.3 m at the distance of 5 m. The vacuum pressure mainly affected the leachate level drawdown within the distance of 15-20 m. When the vacuum pressure in the pumping well was - 30 kPa, it attenuated to - 14.7 kPa and - 6.6 kPa at the distance of 5 m and 10 m, respectively. The influence radius of vacuum pressure was about 15 m. Numerical modeling indicates that the leachate pumping rate and drawdown will decrease with the increase in decreasing rate of hydraulic conductivity with depth, degree of heterogeneity, and anisotropy of hydraulic conductivity of waste. The experimental and numerical results demonstrate the effectiveness of vacuum pressure and provide working parameters for the application of the vacuum wells in MSW landfills.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Vacio , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
8.
Waste Manag ; 107: 54-65, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276126

RESUMEN

The methane emission in a loess-gravel capillary barrier cover (CBC) in winter and summer was investigated by constructing a full-scale testing facility (20 m × 30 m) with a slope angle of 14.5° at a landfill in Xi'an, China. Weather conditions, methane emission, gas concentration, temperature, and volumetric water content (VWC) in the CBC were measured. The temperature and moisture in the CBC showed a typical seasonal pattern of warm and dry in summer and cold and wet in winter. Accordingly, the maximum methane oxidation rate and methane emission were higher in summer. The mean methane influx and methane emission decreased significantly as the VWC increased beyond 40% (i.e., a degree of saturation 0.85) at a depth of 0.85 m, which was near the loess/gravel interface. At this depth, more water was presented in the loess layer in the downslope direction due to capillary barrier effects, which increased the upslope methane emission. More dominant methane emission in the middle- and upper-section of the CBC occurred in summer than in winter as there was less soil moisture to facilitate methane transfer. The LFG balance showed that a significant fraction of the loaded LFG was not accounted in the flux chamber measurements due to the preferential flow along the edges of the CBC. The maximum methane oxidation rate was 93.3 g CH4 m-2 d-1, indicating the loess-gravel CBC could mitigate methane emissions after landfill closure.


Asunto(s)
Metano , Eliminación de Residuos , China , Oxidación-Reducción , Estaciones del Año , Suelo , Instalaciones de Eliminación de Residuos
9.
Sci Total Environ ; 718: 137195, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32087578

RESUMEN

Loess is widely distributed in Northwest China where the rainy season coincides with the warm and vegetation growth period. The use of loess as a capillary barrier cover (CBC) material is promising. However, how the loess/gravel CBC perform as a capillary barrier and landfill gas emissions controller remains elusive. In this study, the performance of a designed CBC comprised 1.3 m-thick compacted loess underlain by 0.3 m-thick gravel in extremely wet and dry years of Xi'an city from 1950 to 2000 was analyzed using numerical modeling. An instrumented CBC test section comprised 0.9 m-thick compacted loess underlain by 0.3 m-thick gravel was constructed to show the hydraulic responses in real conditions from January 2015 to January 2017. The numerical results indicated that the designed CBC performed well as a capillary barrier as no percolation occurred during the extremely wet periods. Despite adopting a CBC of 0.4 m thinner than the designed one, the test section produced only 16.16 mm percolation during the two-year monitoring period, and that can meet the recommended limit of 30 mm/yr. The effect of the capillary break on increasing the water storage within the CBC was observed at the test section in fall. The increased water storage can significantly decrease the gas permeability, and thus improve the performance of the CBC as a LFG emissions controller. Furthermore, the LFG emissions can be controlled to meet the limit set by the Australian guideline by decreasing the bottom gas pressure and artificial watering. Finally, a procedure was proposed to enhance the performance of CBCs.

10.
Waste Manag ; 103: 305-313, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31923839

RESUMEN

In this paper, three sets of laboratory tests were conducted on high-food-waste-content (HFWC-), no-food-waste-content (NFWC-) and decomposed (D-) MSWs to characterize their compression behaviors. The immediate compression ratios C'c were 0.30, 0.23 and 0.18 for HFWC-MSW, NFWC-MSW and D-MSW respectively, and tended to increase with the increasing food waste content of MSW. The release of intra-particle water contained in food waste contributed over 23.6-29.2% to immediate compression for HFWC-MSW. The mechanical creep ratios C'sc were 0.02, 0.015 and 0.01 for HFWC-MSW, NFWC-MSW and D-MSW respectively. A prediction model for C'sc was proposed which incorporated the effects of moisture content, dry unit weight and organic waste content. The bio-compression ratios C'sbI, C'sbII and C'sbIII in response to degradation stage I, II and III were 0.12, 0.10 and 0.02 for HFWC-MSW, and were 0.01, 0.15 and 0.01 for NFWC-MSW. Bio-compression is dominant in stage I and II and mechanical creep is the major contributor in stage III for HFWC-MSW, but to NFWC-MSW, mechanical creep is dominant in stage I and III, and bio-compression takes the main position in stage II. The bio-compression tended to increase linearly with leachate draining rate for HFWC-MSW, and the release of intra-particle water contributed 61.9-65.6% to bio-compression. A new model was proposed that can well capture the highly non-linear behavior of bio-compression for both HFWC-MSW and NFWC-MSW. Based on the above findings, the settlement behavior of HFWC-MSW and NFWC-MSW landfills was compared, and suggestions for technique-efficient and cost-effective design of a NFWC-MSW landfill were discussed.


Asunto(s)
Eliminación de Residuos , China , Alimentos , Presión , Residuos Sólidos , Instalaciones de Eliminación de Residuos
11.
Environ Pollut ; 258: 113676, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31818614

RESUMEN

CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).


Asunto(s)
Metano/química , Oxígeno/química , Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Carbono , Oxidación-Reducción , Suelo
12.
Waste Manag ; 103: 159-168, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887688

RESUMEN

Vertical wells are conventionally used to lower leachate levels or pressures in municipal solid waste (MSW) landfills. However, they are not always efficient or even effective, and in some circumstances retro-fitted horizontal wells represent a potential alternative. However, horizontal wells can be difficult to install and there is a lack of data on their performance. This paper describes the trial construction and operation of three horizontal wells in a landfill at Tianziling, China. The trial was used to develop an improved well installation technique, and to demonstrate the viability of the approach in a typical Chinese landfill. Three wells, between 50 m and 56 m in length, were successfully installed using an improved casing-protected directional drilling method. Average leachate flow rates of two wells were 10.66 m3/day and 3.93 m3/day, respectively. After 74 days of drainage, the maximum leachate level drawdown around the highest flow well was 2.7 m and its distance of influence was up to 50 m. Building on the experience gained at Tianziling, a wellfield comprising twelve horizontal wells having a total length of 1000 m was installed at Xingfeng landfill. After 157 days of drainage, a total volume of ~24,000 m3 leachate had been discharged and the leachate level had been lowered to near the elevation of the horizontal wells. This paper indicates the effectiveness of horizontal wells in reducing leachate level in landfills containing MSW typical of that generated in China, and gives data on installation and performance that may be useful for the design and operation of such an approach.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , China , Presión , Residuos Sólidos , Instalaciones de Eliminación de Residuos
13.
Waste Manag Res ; 38(5): 588-593, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31856695

RESUMEN

A newly developed static chamber method with a laser methane detector and a biogas analyser was proposed to measure the landfill gas emissions and methane (CH4) oxidation rates in landfill covers. The method relied on a laser methane detector for measuring CH4 concentration, avoiding gas samplings during test and hence the potential interference of gas compositions inside the chamber. All the measurements could be obtained on site. The method was applied to determine the landfill gas emissions and CH4 oxidation rates in a full-scale loess gravel capillary barrier cover constructed in landfill. Both laboratory calibration and in-situ tests demonstrated that fast (i.e. <20 min) and accurate measurements could be obtained by the proposed method. The method is capable of capturing the significant spatial and temporal variations of the landfill gas emissions and CH4 oxidation rates in landfill site.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Biocombustibles , Metano , Oxidación-Reducción , Instalaciones de Eliminación de Residuos
14.
Waste Manag ; 91: 128-138, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31203934

RESUMEN

Gaseous emissions from municipal solid waste (MSW) disposal plants pose serious odor pollution and health risks. In this study, the emission of volatile organic compounds and carbon disulfide was compared in the main processing units of three disposal methods, i.e., landfilling, eco-mechanical biological treatment (EMBT) and anaerobic fermentation in a MSW disposal plant. Among the detected volatile compounds (VCs), the top ten odor compounds were methanethiol, dimethyl sulfide, dimethyl disulfide, carbon disulfide, styrene, m-xylene, 4-ethyltoluene, ethylbenzene, 2-hexyl ketone and n-hexane in the MSW disposal plant. Sulfur compounds were the main source of odor at the majority of sampling sites, and aromatic compounds were the dominant odor substrates at the tipping unit and sorting system of EMBT, while 2-hexanone was the major odor substrate at the tipping unit (AT) and sorting system (AS) of anaerobic fermentation and the landfill working surface. At AS and AT, the lifetime cancer risk values for 1,2-dichloroethane and trichloroethylene exceeded the carcinogenic risk value (>1.0E-04), and the hazard index values of naphthalene, trichloroethylene and acrolein all exceeded the acceptable level (>1). Therefore, special attention should be paid to VC emissions from MSW disposal facilities, and protection measures should be adopted for on-site workers to minimize health risks.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Humanos , Odorantes , Residuos Sólidos , Instalaciones de Eliminación de Residuos
15.
Environ Sci Pollut Res Int ; 26(20): 20325-20343, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093916

RESUMEN

In this study, integrate electrical resistivity tomography (ERT) tests were carried out in a large-scale (5.0 × 4.0 × 7.5 m) MSW landfill cell to investigate the possibility of detecting perched leachate mounds, leachate level, and gas accumulation zones at wet landfills. The resistivity of both bulk waste and waste components at different moisture states were measured and the three-phase volumetric relationships of the waste pile were analyzed to better interpret the ERT test results in the large-scale cell. The following observations were given: (1) The relationship between resistivity and volumetric moisture content (VMC) of waste sample can be reasonably fitted by Archie's law. The resistivity of waste components at a saturated state was all lower than 21 Ω m. (2) A significant amount of void gas was entrapped in the underwater waste, being 30.4-34.8% of the whole waste pile in volume. (3) Low-resistivity zones (< 5.0 Ω m) were observed in the waste pile being fully drained under a gravity condition, which was believed to be related to a perched leachate. (4) The average VMC values of the waste layer below and above the leachate level were in the ranges of 46.5-53.1% and 28.1-41.3%, respectively. (5) Irregular variations of high-resistivity zones (> 40 Ω m) observed in the underwater waste were associated with the accumulation and dissipation of gas pressure. It was found that the "gas-breaking value" in the gas accumulation zone was up to 10.5 kPa greater than the pore liquid pressure in the stable methanogenesis stage. These findings shone a light on the possibility of using the ERT method as an efficient tool for mapping the gas/leachate distribution and improving operations at wet landfills.


Asunto(s)
Gases/análisis , Tomografía/métodos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Electricidad , Eliminación de Residuos/métodos
16.
Bioresour Technol ; 248(Pt A): 122-133, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28634127

RESUMEN

Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted.


Asunto(s)
Eliminación de Residuos , Termogravimetría
17.
Waste Manag ; 68: 307-318, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28668602

RESUMEN

The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG.


Asunto(s)
Eliminación de Residuos , Instalaciones de Eliminación de Residuos , Reactores Biológicos , China , Hidrología
18.
Waste Manag ; 65: 63-74, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28412096

RESUMEN

Municipal solid waste (MSW) specimens were created from synthetic fresh MSW degraded in a laboratory scale enhanced degradation reactor. The degree of degradation and saturated hydraulic conductivity ks were measured to study the effects of compression and degradation on ks of MSW. The degree of degradation was characterized through the ratio of cellulose content to lignin content (i.e., C/L) and the loss ratio of volatile solid (i.e., DOD). ks of MSW specimens with different degrees of degradation was measured through triaxial permeameter tests under different confining pressures. It was found that, when the degradation time increased from 0month to 18months, ks decreased less than 1 order of magnitude for specimens with the same porosity (i.e., n=0.63 or 0.69). However, for specimens with the same degradation time, the decrease of ks could reach 2 orders of magnitude with n decreasing from 0.8 to 0.6. It indicates that compression has much greater influence on the reduction of ks than that of degradation. Based on the Kozeny-Carman model and first-order kinetics, a prediction model related to n and C/L (or DOD) of MSW was proposed to analyze the evolution of ks with compression and biodegradation. The methods to determine the values of model parameters were also proposed.


Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos , Residuos Sólidos , Fenómenos Físicos , Presión
19.
Waste Manag ; 63: 27-40, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28325705

RESUMEN

A large-scale bioreactor experiment lasting for 2years was presented in this paper to investigate the biochemical, hydrological and mechanical behaviors of high food waste content (HFWC) MSW. The experimental cell was 5m in length, 5m in width and 7.5m in depth, filled with unprocessed HFWC-MSWs of 91.3 tons. In the experiment, a surcharge loading of 33.4kPa was applied on waste surface, mature leachate refilling and warm leachate recirculation were performed to improve the degradation process. In this paper, the measurements of leachate quantity, leachate level, leachate biochemistry, gas composition, waste temperature, earth pressure and waste settlement were presented, and the following observations were made: (1) 26.8m3 leachate collected from the 91.3 tons HFWC-MSW within the first two months, being 96% of the total amount collected in one year. (2) The leachate level was 88% of the waste thickness after waste filling in a close system, and reached to over 100% after a surcharge loading of 33.4kPa. (3) The self-weight effective stress of waste was observed to be close to zero under the condition of high leachate mound. Leachate drawdown led to a gain of self-weight effective stress. (4) A rapid development of waste settlement took place within the first two months, with compression strains of 0.38-0.47, being over 95% of the strain recorded in one year. The compression strain tended to increase linearly with an increase of leachate draining rate during that two months.


Asunto(s)
Alimentos , Eliminación de Residuos/métodos , Instalaciones de Eliminación de Residuos , Residuos/análisis , Biodegradación Ambiental , Reactores Biológicos , Hidrología
20.
Huan Jing Ke Xue ; 33(4): 1389-96, 2012 Apr.
Artículo en Chino | MEDLINE | ID: mdl-22720594

RESUMEN

The amount of leachate generation rate in MSW landfills is often underestimated during design phase in China. A water balance model of a valley landfill, whose size is 400 m long, 500 m wide and 50 m thick, is created to investigate the influences of initial moisture content of waste on source and production of leachate. The 50 m thick waste mass is assumed to be 5 layers. Each layer is 10 m thick with a filling period of 2 years. The leachate mainly comes from precipitation and from squeezed pore water of waste. It is found that higher initial moisture content of waste leads to higher amounts of squeezed leachate and total leachate generation rate, and also results in a high ratio of squeezed leachate to total leachate generation rate. For the cases that the initial moisture contents of waste are 27%, 40%, 50%, and 60%, the amounts of total leachate generation rate are 272, 583, 823 and 1 063 m3 x d(-1), respectively, and the amounts of squeezed leachate are--144, 168, 408, and 647 m3 x d(-1), respectively. It is also found that when the initial moisture content of waste is greater than 50%, the squeezed leachate becomes the primary source of total leachate generation rate. However, the formula for predicting leachate generation rate used in the national code could not consider the contribution of squeezed leachate, this may cause a significant underestimation of leachate generation rate for the case having a high initial moisture content of waste. Based on the water balance analyses, a modified formula for predicting leachate generation rate, which includes the contribution of squeezed leachate is proposed. It is verified by consideration of the operational practices of two large-scale landfills in southern China.


Asunto(s)
Eliminación de Residuos/métodos , Contaminantes del Suelo/análisis , Administración de Residuos , Residuos/análisis , Agua/análisis , Predicción , Modelos Teóricos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...